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A rigorous stability analysis of the previously published semi-explicit time domain Discontinuous Galerkin (DG) H-Ф approach for 
eddy current simulations is presented. The considered DG finite element method (FEM) enables explicit time stepping in electrically 
conducting regions and eliminates the need for solving large sparse ill-conditioned equation systems. The considered method utilizes the 
magnetic scalar potential in electrically non-conducting regions computed by using the nodal finite elements. The theoretical stability 
limit of the considered semi-explicit time domain approach is obtained by using the Z-transform of the discrete time domain DG-FEM 
equations and by performing an eigenvalue analysis of the underlying elemental DG-FEM matrices. The obtained results are tested on 
a simple 3-D example and an excellent agreement between the theoretical stability limit and the empirically obtained values was found.              
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I. INTRODUCTION 
CCURATE EDDY CURRENT simulations are of paramount 
importance for modern design of power devices such as 

power and distribution transformers, circuit breakers, 
switchgears, and reactors. Already in the early seventies, this 
was recognized by a wide scientific community resulting in 
numerous publications considering eddy current field 
formulations [1], [2] and the corresponding numerical solution 
methods [3], [4]. 

The most widely used numerical methods for solving eddy 
current problems are presently vector FEM frequency domain 
(FD) approaches based on the T-Ω field formulation, such as 
for example the solvers presented in [5], [6].  

To overcome considerable numerical problems of the modern 
FD eddy current solvers (such as notoriously ill-conditioned 
curl-curl matrix, inaccurate treatment of nonlinear materials, 
and expensive matrix preconditioning for iterative solvers in 
terms of CPU-time and memory, [3], [4]) one needs to perform 
the simulations in time domain with an explicit time stepping, 
i.e. with a time stepping that does not require a solution of a 
large linear equation system in each time step. This is possible 
to achieve by using the DG-FEM that numerically decouples 
finite elements enabling the use of non-conforming meshes [7] 
and explicit time stepping [8].  

In the publication [9] a 2-D eddy current solver based on the 
A-A field formulation and time domain DG-FEM is described. 
As opposed to this work that deals with an implicit scheme and 
ill-conditioned curl-curl matrix in nonconductive domain, a 
novel 3-D eddy current time domain DG-FEM solver based on 
the H-Ф field formulation was recently presented [10]. The 
semi-explicit H-Ф eddy current solver utilizes the nodal FEM 
in the implicit nonconductive part for computing the magnetic 
scalar potential thus removing completely the ill-conditioned 
curl-curl matrix [10]. 

The recent publication [10] describes the 3-D time domain 
DG-FEM for eddy current simulations in details without 
considering its stability analysis. The corresponding stability 
analysis is the main scientific contribution of this paper.   

II. STABILITY ANALYSIS 
In the recent publication [10] the theoretical and 

implementation details of the novel time domain DG-FEM H-
Φ eddy current solver were presented. For this reason only the 
equation relevant for stability analysis are repeated here. 

According to [10], the explicit time stepping of the 
considered DG-FEM H-Φ is performed according to the 
following equations based on the forward difference approach 
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where the matrix entries in (2) and (3) can be computed as fol-
lows 
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where f
e∆ represents the fth face of the eth tetrahedron Ωe, “+” 

denotes the field value on the other side of the interface, i.e. 
outside of the considered tetrahedron, and iN



  is the vector 
shape function related to the ith edge of the tetrahedron [4].  
The integrals (4) – (6) in this study were numerically evaluated 
by using the well-known Gauss quadrature. 

Equation (2) and (3) can be combined and written in the 
following compact form 
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where the source vector ( )k
eb  of the time step “k” encompasses 

the field values outside of the considered tetrahedron.  
By applying the Z-transform to the discrete system (7) and 

by taking into account that only the homogenous part of the 
obtained equation is relevant for the system stability, the 
following homogenous equation is obtained [11] 
( ){ }1 0ez t Hλ− + ∆ =  (8) 

where z is the complex variable, t∆  is the time step, and λ is an 
eigenvalue of the matrix [Me].  

According to the theory of discrete systems [11], the system 
is stable if the complex roots of the characteristic equation (8) 
are located in the complex plane within the unit circle. This 
yields the following stability limit    
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where [ ]( )eMρ   is the spectral radius of the matrix [Me], i.e. 

[ ]( ) ( )1 2max , ,...,e nMρ λ λ λ=   is the maximal absolute 

eigenvalue of the matrix [Me]. The details of derivation of 
Equation (9) will be given in the full paper.  

III. RESULTS AND CONCLUSIONS 
The obtained stability condition (9) can be used to evaluate the 
influence of the mesh quality on the integration time step. The 
aspect ratio of a tetrahedron was gradually increased, as shown 
in Fig. 1 (top), and the corresponding stability limit was compu- 
 

 

 
 

Fig. 1. Stability condition for tetrahedrons of different quality measured by the 
aspect ratio (the radius ratio between the circumscribed and inscribed sphere of 
the tetrahedron) is presented. The obtained results reveal the following 
dependence of the stability limit from the edge length Δtmax=A·ledge

δ. The 
numerical results were obtained for the following material data σ=3.5·106S/m, 
µr=1.   

 
Fig. 2. A simple 3-D eddy current example is presented (left). A rectangular 
block of a conductive material with the material properties σ=3.5·106S/m, µr=1 
is considered. The source magnetic field is applied on the front surface (𝜕𝜕𝐶𝐶𝐶𝐶Ω) 
and has the amplitude 1A/m and frequency 50Hz. The obtained magnetic field 
at the moment of time 5ms are depicted with the time step slightly below the 
stability limit (middle) and slightly above it (right). The effect of the lost 
stability is evident.  
 
ted. The obtained results, shown in Fig. 1 (bottom), reveal the 
following important power function Δtmax=A·ledge

δ, where the 
constant A depends on the element’s aspect ratio and material 
properties and δ depends on the interpolation order of the 
tetrahedron.  

To practically test the validity of the theoretically obtained 
stability condition (9) a simple 3-D eddy current problem 
presented in Fig. 2 was defined. It is evident in Fig. 2 that the 
stability condition (9) is practically confirmed. 

In the full paper will be given all the theoretical details related 
to Equations (7)-(9), as well as the numerical results of realistic 
3-D eddy current problems with complex geometry.  
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